606 research outputs found

    Can we avoid high coupling?

    Get PDF
    It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable

    High Temperature Expansions and Dynamical Systems

    Full text link
    We develop a resummed high-temperature expansion for lattice spin systems with long range interactions, in models where the free energy is not, in general, analytic. We establish uniqueness of the Gibbs state and exponential decay of the correlation functions. Then, we apply this expansion to the Perron-Frobenius operator of weakly coupled map lattices.Comment: 33 pages, Latex; [email protected]; [email protected]

    Anomalous heavy-fermion and ordered states in the filled skutterudite PrFe4P12

    Full text link
    Specific heat and magnetization measurements have been performed on high-quality single crystals of filled-skutterudite PrFe_4P_{12} in order to study the high-field heavy-fermion state (HFS) and low-field ordered state (ODS). From a broad hump observed in C/T vs T in HFS for magnetic fields applied along the direction, the Kondo temperature of ~ 9 K and the existence of ferromagnetic Pr-Pr interactions are deduced. The {141}-Pr nuclear Schottky contribution, which works as a highly-sensitive on-site probe for the Pr magnetic moment, sets an upper bound for the ordered moment as ~ 0.03 \mu_B/Pr-ion. This fact strongly indicates that the primary order parameter in the ODS is nonmagnetic and most probably of quadrupolar origin, combined with other experimental facts. Significantly suppressed heavy-fermion behavior in the ODS suggests a possibility that the quadrupolar degrees of freedom is essential for the heavy quasiparticle band formation in the HFS. Possible crystalline-electric-field level schemes estimated from the anisotropy in the magnetization are consistent with this conjecture.Comment: 7 pages and 7 figures. Accepted for publication in Phys. Rev.

    Exotic Heavy Fermion State in the Filled Skutterudite PrFe4_4P12_{12} Uncovered by the de Haas-van Alphen Effect

    Full text link
    We report the de Haas-van Alphen (dHvA) experiment on the filled skutterudite PrFe4_4P12_{12} exhibiting apparent Kondo-like behaviors in the transport and thermal properties. We have found enormously enhanced cyclotron effective mass mc=81m0m^{\rm \ast}_{\rm c}=81 m_{\rm 0} in the high field phase (HFP), which indicates that PrFe4_4P12_{12} is the first Pr-compound in which really heavy mass has been unambiguously confirmed. Also in the low field non-magnetic ordered phase (LOP), we observed the dHvA branch with mc=10m0m^{\rm \ast}_{\rm c}=10 m_{0} that is quite heavy taking into account its small Fermi surface volume (0.15% of the Brillouin zone size). The insensitivity of mass in LOP against the magnetic field suggests that the quadrupolar interaction plays a main role both in the mass renormalization and the LOP formation.Comment: 5 pages, 5 figures, Phys. Rev. B (01 October 2002) in pres

    Collective dynamics of colloids at fluid interfaces

    Full text link
    The evolution of an initially prepared distribution of micron sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \lambda\ given by the capillary length of typically 1 mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaption of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \lambda\ the dynamics show a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for publication in the European Physical Journal

    Mapping Vesta: First Results from Dawn’s Survey Orbit

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution.Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater sizefrequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase – the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of ~3000 km with a beta angle of 10°-15°

    Exact results on decoherence and entanglement in a system of N driven atoms and a dissipative cavity mode

    Full text link
    We solve the dynamics of an open quantum system where N strongly driven two-level atoms are equally coupled on resonance to a dissipative cavity mode. Analytical results are derived on decoherence, entanglement, purity, atomic correlations and cavity field mean photon number. We predict decoherence-free subspaces for the whole system and the N-qubit subsystem, the monitoring of quantum coherence and purity decay by atomic populations measurements, the conditional generation of atomic multi-partite entangled states and of cavity cat-like states. We show that the dynamics of atoms prepared in states invariant under permutation of any two components remains restricted within the subspace spanned by the completely symmetric Dicke states. We discuss examples and applications in the cases N=3,4.Comment: 7 pages, 4 figures, accepted in EPJ

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    corecore